a2 United States Patent

Ashok et al.

US009104454B2

(0) Patent No.: US 9,104,454 B2
(45) Date of Patent: *Aug. 11, 2015

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(63)

(1)

(52)

(58)

VIRTUAL IMAGE OVERLOADING FOR
SOLUTION DEPLOYMENT

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Rohith K. Ashok, Apex, NC (US); Matt
R. Hogstrom, Cary, NC (US); Jose
Ortiz, Raleigh, NC (US); Ruth E.
Willenborg, Apex, NC (US)

Assignee: INTERNATIONAL BUSINESS
MACHINES CORPORATION,
Armonk, NY (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 278 days.

This patent is subject to a terminal dis-
claimer.

Appl. No.: 13/740,906
Filed: Jan. 14, 2013

Prior Publication Data

US 2013/0132956 Al May 23, 2013

Related U.S. Application Data

Continuation of application No. 12/767,170, filed on
Apr. 26, 2010, now Pat. No. 8,381,211.

Int. Cl1.

GO6F 9/455 (2006.01)

GO6F 9/445 (2006.01)

U.S. CL

CPC GO6F 9/45533 (2013.01); GO6F 8/63

(2013.01); GOGF 9/45558 (2013.01); GOGF
2009/4557 (2013.01)
Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

6,477,624 Bl 112002 Kedem et al.

7,577,722 B1* 82009 Khandekaretal. 709/220
2006/0248527 Al 11/2006 Jaeckel et al.
2007/0006205 Al 1/2007 Kennedy et al.

2009/0077551 Al* 3/2009 Whiteleyccccoevveeenenn 718/1
(Continued)
OTHER PUBLICATIONS

United States Patent and Trademark Office, Notice of Allowance for
U.S. Appl. No. 13/435,034, Mar. 6, 2014, pp. 1-5, Alexandria, VA,
USA.

(Continued)

Primary Examiner — Gregory A Kessler
(74) Attorney, Agemt, or Firm—Lee Law, PLLC;
Christopher B. Lee

(57) ABSTRACT

An instantiable virtual machine part definition and part con-
figuration metadata of an instantiable virtual machine capable
of deployment as at least a portion of a service solution is
received from a master overloaded virtual image. A determi-
nation is made as to whether to configure the instantiable
virtual machine to reuse, using virtual image sharing, at least
one portion of the master overloaded virtual image during
deployment of the instantiable virtual machine within a ser-
vice solution. A minimal executable virtual machine part core
of the instantiable virtual machine that reuses, using the vir-
tual image sharing, the at least one portion of the master
overloaded virtual image during execution is identified. A
minimal executable virtual machine part instantiable from the
identified minimal executable virtual machine part core as the
instantiable virtual machine is configured to utilize, using the
virtual image sharing, a shared resource within the master
overloaded virtual image during execution.

18 Claims, 6 Drawing Sheets

DEPLOY, VIA A VIRTUAL IMAGE
CONFIGURATION DEVICE, AT LEAST
ONE MASTER OVERLOADED VIRTUAL

IMAGE TO A HYPERVISOR CLOUD [402
THAT COMPRISES A PLURALITY OF
SERVERS, EACH OF THE PLURALITY
OF SERVERS CONFIGURED BASED
UPON A HYPERVISOR PLATFORM TO
SUPPORT AT LEAST ONE VIRTUAL
MACHINE

¥

INSTANTIATE, BASED UPON THE AT
LEAST ONE MASTER OVERLOADED
VIRTUAL IMAGE, A SERVICE
SOLUTION AS A PLURALITY OF 404
VIRTUAL MACHINES ASSOCIATED |-
WITH AT LEAST ONE OF THE
PLURALITY OF SERVERS, WHERE THE
SERVICE SOLUTION COMPRISES A
PLATFORM AGNOSTIC PATTERN
INDEPENDENT OF THE HYPERVISOR
PLATFORM

¥

INITIATE STARTUP OF EACH OF THE |~408
INSTANTIATED PLURALITY OF
VIRTUAL MACHINES

US 9,104,454 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2009/0094576 Al
2010/0306772 Al

4/2009 Bouchard, Sr. et al.
12/2010 Arnold et al.

OTHER PUBLICATIONS

Jin Ryong Kim, et al., Hierarchical QoS Architecture for Networked
Virtual Dancing Environment, Article, International Conference
Artificial Reality Telexistence , Dec. 2003, pp. 1-8, The Virtual Real-
ity Society of Japan, Japan.

Alan Dearle, Software Deployment, Past, Present and Future, Article,
International Conference on Software Engineering, 2007, pp. 269-
284, IEEE Computer Society, Washington, DC, USA.

Jin Ryong Kim, et al., Hierarchical QoS Architecture for Virtual
Dancing Environment, Article, Journal of Kiss: Computer Systems
and Theory, Dec. 2003, pp. 675-690, vol. 30, No. 11-12, Korea
Information Science Society, South Korea.

Darrell Reimer et al., Opening Black Boxes: using Semantic Infor-
mation to Combat Virtual Machine Image Sprawl, Article, Proceed-
ings of the 4th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, Mar. 2008, pp. 111-120, Asso-
ciation for Computing Machinery, New York, NY, USA.

United States Patent and Trademark Office, Office Action for U.S.
Appl. No. 12/767,170, Jun. 26,2012, pp. 1-12, Alexandria, VA, USA.
United States Patent and Trademark Office, Notice of Allowance for
U.S. Appl. No. 12/767,170, Oct. 17, 2012, pp. 1-8, Alexandria, VA,
USA.

United States Patent and Trademark Office, Office Action for U.S.
Appl. No. 13/435,034, Dec. 2, 2013, pp. 1-16, Alexandria, VA, USA.

* cited by examiner

US 9,104,454 B2

Sheet 1 of 6

Aug. 11, 2015

U.S. Patent

1 Ol

oct
AdO11SOd3d
JOVNI

143
Vivavli3inw
NOILYINOIANOD

20l
30I1A3d
NOILVYHNOIANOD FOVII

MHOML3N

_ _ _
_ _ _

ocr _ _ T _
J9VHOLS _ q0L %0l _ 39VHOLS _
_ _ _

el L D N |

_ _ _

| — b — — _
_yer e e ..l 91 . Y |
Z 43AY3S 1 d3AN3S _ _ NIRSEIMERS RSEVNES |
_ _ _

_ _)

US 9,104,454 B2

Sheet 2 of 6

Aug. 11, 2015

U.S. Patent

¢ 9Old
" 801
4 0ce och \
1 d3AY3sS JOVHOLS _
=T _ y >
: _ 802
- _1
81z
L rail
_ v _
Z d3Ad3S /_/
| 8L
|
IIIIIIIII 4%
V1vav.iaw
||||||||| _ NOILYHNOIANOD
| oLl
oIl |
N "3AY3S \\
_
N _ ¢ ___ —, 0iC
|
2 | 90z
ARSENNES b1z 7
D Do

¥0c
JOVINI 43LSYIN

S WYO4Lv1d

\\}

N 20¢

JOVINI 431SVIN
¢ WNHO41v1d

N
—

N

00¢
JOVII 43 1SV
I NHO41vld

L
S

~

ocl

(&
—

US 9,104,454 B2

Sheet 3 of 6

Aug. 11, 2015

U.S. Patent

NOILVYOINNNNOD

|_-90¢

08
301A3a 1nanl

€ Old
AN
ezl V.1vav.iaw
~~~{ NOILVYNOI4NOD
\\\\|}
(\\\
\\J
- AHOLISOd3d
~—— IOV
—
(\\
9€~—_]| 9ONISSID0Yd
JOVINI TVNLHIA
ple~| | LNIWIOVYNVI
B NOILN1OS
Zie~] | ININAOTAC
™~ NOILN1OS
0LE ~— NOIS3q
B NOILN1OS
80¢
T AHOWIN

8l¢€

N
-—



U.S. Patent Aug. 11, 2015 Sheet 4 of 6 US 9,104,454 B2

N
o

DEPLOY, VIA A VIRTUAL IMAGE
CONFIGURATION DEVICE, AT LEAST

ONE MASTER OVERLOADED VIRTUAL

IMAGE TO A HYPERVISOR CLOUD | _—402
THAT COMPRISES A PLURALITY OF

SERVERS, EACH OF THE PLURALITY
OF SERVERS CONFIGURED BASED

UPON A HYPERVISOR PLATFORM TO
SUPPORT AT LEAST ONE VIRTUAL

MACHINE

Y

INSTANTIATE, BASED UPON THE AT
LEAST ONE MASTER OVERLOADED
VIRTUAL IMAGE, A SERVICE

SOLUTION AS A PLURALITY OF 404
VIRTUAL MACHINES ASSOCIATED L

WITH AT LEAST ONE OF THE
PLURALITY OF SERVERS, WHERE THE
SERVICE SOLUTION COMPRISES A
PLATFORM AGNOSTIC PATTERN
INDEPENDENT OF THE HYPERVISOR
PLATFORM

Y

INITIATE STARTUP OF EACH OF THE | — 406
INSTANTIATED PLURALITY OF
VIRTUAL MACHINES

FIG. 4



U.S. Patent Aug. 11, 2015 Sheet 5 of 6 US 9,104,454 B2

200 506
S04 CREATE ™ RECEIVE PART
502 MASTER DEFINITION AND
DEFINE ves | OVERLOADED PART
A SOLUTION? VIRTUAL CONFIGURATION
IMAGE METADATA

534
ADDITIONAL IMAGE SHARING?
2 ¢
536 INKED IMAGE NG
~
TEST
1
SOLUTION 510
IDENTIFY MINIMAL
YES EXECUTABLE PART
ADD PART? CORE
516 ¢ 512
ADD PART DEFINITION TO MASTER
OVERLOADED VIRTUAL IMAGE [ & FORM MINIMAL
EXECUTABLE PART
Y CORE
CONFIGURE PROFILE FOR
518
INSTANTIATING PART BASED 514
ON METADATA CONFIGURE MINIMAL
520~ " EXECUTABLE PART TO
ADD PART PROFILE TO MASTER — é’gé%ﬁiég'éﬁ?g
OVERLOADED VIRTUAL IMAGE MASTER
Y OVERLOADED
STORE | 522 VIRTUAL IMAGE
METADATA 526
524 526 Z
CREATE PART/
XES || RECEIVE PART | | IMAGE
A CONNECTION CONNECTION
INFORMATION METADATA
530~_
STORE PART/IMAGE
CONNECTION y
METADATA

FIG. 5



U.S. Patent Aug. 11, 2015 Sheet 6 of 6 US 9,104,454 B2

DEPLOY
A SOLUTION?
2
% 606~
INITIATE STARTUP OF
EACH INSTANTIATED COPY MASTER OVERLOADED
VIRTUAL MACHINE AND VIRTUAL IMAGE TO
MANAGE DEPLOYED HYPERVISOR CLOUD STORAGE
SOLUTION +
SELECT METADATA THAT
YES IDENTIFIES
PRECONFIGURED PROFILE

ANOTHER IMAGE?
FOR PRECONFIGURED PART

AND SEND METADATA TO
MASTER OVERLOADED
VIRTUAL IMAGE

7~

YES 608 610

ANOTHER PART?

MINIMAL
EXECUTABLE?

622
ESTABLISH CONNECTION 512
BETWEEN INSTANTIATED REPLICATE MINIMAL EXECUTABLE
VIRTUAL MACHINES PART FROM MASTER OVERLOADED }|—
VIRTUAL IMAGE

REPLICATE EXECUTABLE PART
— MASTER OVERLOADED
VIRTUAL IMAGE

88 4
CONFIGURE REPLICATED ‘4
EXECUTABLE PART AS A |
VIRTUAL MACHINE STORE REPLICATED
EXECUTABLE PART TO
616 -] VIRTUAL MACHINE HOST

FIG. 6



US 9,104,454 B2

1
VIRTUAL IMAGE OVERLOADING FOR
SOLUTION DEPLOYMENT

RELATED APPLICATIONS

This application is a continuation of and claims priority to
and claims the benefit of U.S. patent application Ser. No.
12/767,170 titled “VIRTUAL IMAGE OVERLOADING
FOR SOLUTION DEPLOYMENT,” which was filed in the
United States Patent and Trademark Office on Apr. 26, 2010,
and which has a current status of “Allowed,” and this appli-
cation is related to co-pending U.S. patent application Ser.
No. 13/435,034 titled “VIRTUAL IMAGE OVERLOADING
FOR SOLUTION DEPLOYMENT,” which was filed in the
United States Patent and Trademark Office on Mar. 30, 2012,
both of which are incorporated herein by reference in their
entirety.

BACKGROUND

The present invention relates to solution deployment
within hypervisor platform computing clouds. More particu-
larly, the present invention relates to virtual image overload-
ing for solution deployment.

A hypervisor platform represents a virtualized hardware
platform. A hypervisor cloud represents a collection of serv-
ers or other computing devices that operate using a common
hypervisor platform. Different virtual images may be loaded
onto different computing devices within a hypervisor cloud to
implement a service solution.

BRIEF SUMMARY

A method includes receiving, at a virtual image configura-
tion device, an instantiable virtual machine part definition and
part configuration metadata of an instantiable virtual machine
capable of deployment as at least a portion of a service solu-
tion from a master overloaded virtual image; determining
whether to configure the instantiable virtual machine to reuse,
via virtual image sharing, at least one portion of the master
overloaded virtual image during deployment of the instan-
tiable virtual machine within a service solution; identifying,
from the instantiable virtual machine part definition and part
configuration metadata in response to determining to config-
ure the instantiable virtual machine to reuse, via the virtual
image sharing, the at least one portion of the master over-
loaded virtual image, a minimal executable virtual machine
part core of the instantiable virtual machine that reuses, via
the virtual image sharing, the at least one portion of the master
overloaded virtual image during execution; and configuring a
minimal executable virtual machine part instantiable from the
identified minimal executable virtual machine part core as the
instantiable virtual machine to utilize, via the virtual image
sharing, a shared resource within the master overloaded vir-
tual image during execution.

A system includes a communication module and a proces-
sor programmed to: receive, via the communication module,
an instantiable virtual machine part definition and part con-
figuration metadata of an instantiable virtual machine capable
of deployment as at least a portion of a service solution from
amaster overloaded virtual image; determine whether to con-
figure the instantiable virtual machine to reuse, via virtual
image sharing, at least one portion of the master overloaded
virtual image during deployment of the instantiable virtual
machine within a service solution; identify, from the instan-
tiable virtual machine part definition and part configuration
metadata in response to determining to configure the instan-

10

15

20

25

30

35

40

45

50

55

60

65

2

tiable virtual machine to reuse, via the virtual image sharing,
the at least one portion of the master overloaded virtual
image, a minimal executable virtual machine part core of the
instantiable virtual machine that reuses, via the virtual image
sharing, the at least one portion of the master overloaded
virtual image during execution; and configure a minimal
executable virtual machine part instantiable from the identi-
fied minimal executable virtual machine part core as the
instantiable virtual machine to utilize, via the virtual image
sharing, a shared resource within the master overloaded vir-
tual image during execution.

A computer program product includes a computer readable
storage medium having computer readable program code
embodied therewith, where the computer readable program
code when executed on a computer causes the computer to:
receive an instantiable virtual machine part definition and part
configuration metadata of an instantiable virtual machine
capable of deployment as at least a portion of a service solu-
tion from a master overloaded virtual image; determine
whether to configure the instantiable virtual machine to reuse,
via virtual image sharing, at least one portion of the master
overloaded virtual image during deployment of the instan-
tiable virtual machine within a service solution; identify, from
the instantiable virtual machine part definition and part con-
figuration metadata in response to determining to configure
the instantiable virtual machine to reuse, via the virtual image
sharing, the at least one portion of the master overloaded
virtual image, a minimal executable virtual machine part core
of the instantiable virtual machine that reuses, via the virtual
image sharing, the at least one portion of the master over-
loaded virtual image during execution; and configure a mini-
mal executable virtual machine part instantiable from the
identified minimal executable virtual machine part core as the
instantiable virtual machine to utilize, via the virtual image
sharing, a shared resource within the master overloaded vir-
tual image during execution.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a block diagram of an example of an implemen-
tation of a system for virtual image overloading for solution
deployment according to an embodiment of the present sub-
ject matter;

FIG. 2 is a logical flow block diagram of an example of an
implementation of portions of the system of FIG. 1 for virtual
image overloading for solution deployment according to an
embodiment of the present subject matter;

FIG. 3 is a block diagram of an example of an implemen-
tation of an image configuration device capable of performing
automated virtual image overloading for solution deployment
according to an embodiment of the present subject matter;

FIG. 4 is a flow chart of an example of an implementation
of a process for automated virtual image overloading for
solution deployment according to an embodiment of the
present subject matter;

FIG. 5 is a flow chart of an example of an implementation
of'a process for defining solutions and design of master over-
loaded virtual images for automated virtual image overload-
ing for solution deployment according to an embodiment of
the present subject matter; and

FIG. 6 is a flow chart of an example of an implementation
of a process for deployment of master overloaded virtual
images for automated virtual image overloading for solution
deployment according to an embodiment of the present sub-
ject matter.



US 9,104,454 B2

3
DETAILED DESCRIPTION

The examples set forth below represent the necessary
information to enable those skilled in the art to practice the
invention and illustrate the best mode of practicing the inven-
tion. Upon reading the following description in light of the
accompanying drawing figures, those skilled in the art will
understand the concepts of the invention and will recognize
applications of these concepts not particularly addressed
herein. It should be understood that these concepts and appli-
cations fall within the scope of the disclosure and the accom-
panying claims.

The subject matter described herein provides virtual image
overloading for solution deployment. The virtual image over-
loading for solution deployment may be used to design,
deploy, and manage solutions without requiring multiple vir-
tual images to be deployed. A single master overloaded vir-
tual image includes multiple parts. Each part may be designed
and instantiated to operate as a stand-alone virtual machine.
Alternatively, each instantiated part may be designed to reuse
at least a portion of the master overloaded virtual image
during execution to reduce copying requirements during
instantiation. Where a portion of the master overloaded vir-
tual image is reused during execution, the respective part
represents a configured minimal executable portion of a vir-
tual machine designed to leverage reuse from the master
overloaded virtual image. Each configured part may be
instantiated to implement at least a portion of a service solu-
tion from the single master overloaded virtual image. Virtual
image copying during deployment and virtual image prolif-
eration may be reduced. Additionally, design, deployment,
and management of service solutions may be improved.

To facilitate flexibility in deployment of solutions, parts
may be created to be instantiated either as entire parts or as the
minimal executable portions described above to leverage
reuse from the master overloaded virtual image. Operational
factors, such as performance, storage, and other factors, may
be used to determine whether to instantiate entire parts or
minimal executable portions with reuse during execution
from the master overloaded virtual image(s). For example,
where higher run-time performance is desired and storage
and deploy-time performance are of lesser concern, entire
parts may be instantiated. This may additionally facilitate
improved recoverability. Alternatively, where run-time per-
formance may be of lesser concern than deploy-time perfor-
mance and storage requirements, minimal executable por-
tions may be instantiated to leverage reuse from the master
overloaded virtual image. As such, configuration of parts for
deployment with solutions may be varied such that perfor-
mance and storage tradeoffs, for example, may be varied to
offer a range of solution performance and storage alterna-
tives.

It should be understood that though the present description
focuses on configuration and instantiation of either complete
or minimal executable parts, parts that operate with some
reuse along a continuum between completed parts and mini-
mal executable parts may be used as appropriate for the given
implementation. Accordingly, many variations on configur-
ing parts for instantiation in association with solutions are
possible and all are considered within the scope of the present
subject matter. During deployment, a solution deployer may
make a determination based upon client guidelines regarding
performance, storage, and other criteria, as to whether to
instantiate entire parts, minimal executable portions, or parts
that are configured for a variation of one or more such criteria.

To alleviate virtual image copying and proliferation, the
present subject matter provides a master overloaded virtual

10

15

20

25

30

35

40

45

50

55

60

65

4

image that is preinstalled with software that may be used as
the base for multiple solutions. This single master overloaded
virtual image is preconfigured with “parts™ for the different
components of the solution and stored in an image repository.
As such, the terminology “master overloaded virtual image”
as used herein refer to a virtual image that includes more than
one preconfigured part that may be instantiated in association
with one or more servers associated with a hypervisor cloud
to implement at least a portion of one or more solutions. As
described below, additional master virtual images may also
form a solution. These additional master virtual images may
also include master overloaded virtual images.

Solution builders interact with abstractions of the parts
within a solution design user interface to define one or more
solutions, without knowledge that all of these parts may be
sourced from the same master overloaded virtual image.
When a solution deployer deploys one of the defined solu-
tions, the master overloaded virtual image only needs to be
transferred once from the repository (if it has not already been
transferred). The master overloaded virtual image may then
be started multiple times for each part in the solution, with the
part information from which to select preconfigured profiles
passed in as parameters. Platform specific technologies may
be leveraged to optimize performance of starting of the same
master overloaded virtual image as multiple virtual machines,
all transparently from the perspective of the solution deployer
and solution builder. As such, one master overloaded virtual
image may be reused many times. Use of a single master
overloaded virtual image provides improved tracking and
maintenance, with reduced image proliferation. Deployment
times may be improved because only a single image transfer
is required and then platform performance optimizations may
be transparently leveraged.

One master overloaded virtual image may be developed
and shipped. This master overloaded virtual image may be
preinstalled and preconfigured to support multi-machine
solutions. For example, a typical portal server, such as Web-
sphere® portal server (WPS), solution may include several
WPS nodes in a cluster along with a database. This solution
may be instantiated as multiple virtual machines. To support
this solution, the master image includes all the code for WPS
and a database management system, such as DB2®, along
with preconfigured parts for WPS cluster nodes and DB2.
Another example for an application server, such as Web-
sphere® application server (WAS) may include pre-config-
ured parts of a deployment manager, a custom node, a stan-
dalone node, a hypertext transfer protocol server, such as
IBM® HTTP server (IHS), a job manager, etc. Capabilities
(e.g., executable code segments, modules, etc.) may be
included within the master overloaded virtual image to sup-
port instantiation. As such, one master overloaded virtual
image may be stored into an image repository along with the
capabilities to work with the parts in the image for instantia-
tion of the respective parts of a given solution.

A solution designer may configure a specific solution by
manipulating the parts within the master overloaded virtual
image using a solution design interface application. The fact
that there is only one underlying virtual image may be trans-
parent to the solution designer. The solution deployer may
define different solutions based upon the defined parts. For
example, one solution may include a WPS clusterto DB2® as
three virtual machines, and another solution may include a
standalone WPS with DB2®. The solution deployer may
select one of the defined solutions to deploy. If the base master
overloaded virtual image has not previously been transferred
to storage, such as a storage area network (SAN) or storage
associated with one or more servers associated with a hyper-



US 9,104,454 B2

5

visor cloud, it may be transferred at the time of deployment.
Transparently to the solution deployer, the master overloaded
virtual image may be instantiated by fast replication using
platform specific technologies (e.g., VMware® linked
clones, zZVM flash copy, etc.) so that there are as many “cop-
ies” as needed to support the virtual machines that need to be
started to implement the deployed solution. The virtual
machines may be started with a parameter passed in for the
preconfigured part. The parameter may include part informa-
tion from which to select preconfigured profiles that is passed
in as parameters. For example, one virtual image may be a
WPS virtual machine and one may be a DB2® image. The
solution deployer accesses the solution as three unique virtual
machines with no knowledge that they are all based from the
same master overloaded virtual image. The virtual machines
may be available more rapidly than if they were sourced from
three separate virtual images.

Parts may be designed based upon preconfigured profiles
for a part, which are, in turn, based upon metadata that defines
the respective parts. Instantiation of the parts may include
selecting a preconfigured profile for a part by passing meta-
data that defines and selects the part from the master over-
loaded virtual image.

In addition to the details described above, the present sub-
ject matter combines packaging of the software stack for the
various parts of a solution as master overloaded virtual
images with metadata-based patterns and application scripts
to describe a configuration. The patterns are platform agnos-
tic and, as such, are without knowledge of the various hard-
ware platforms. Both the patterns and scripts provide for
deployment time parameterization. The master overloaded
virtual images are platform dependent. However they expose
platform independent parameterization that is used by the
patterns. The patterns and scripts are platform independent.
This platform agnostic pattern abstraction provides a mecha-
nism to use the same pattern as the base for deployment across
multiple platforms. As such, consistency across development,
test, and production platforms may be improved. Accord-
ingly, the same configurations may be used across different
platforms for development through test to production.

For example, a pattern may be created to represent a WAS
cell topology with session replication and high availability
messaging. The pattern may be used with an image created for
VMware®/Linux and deployed into a VMware® based pre-
quality assurance (pre-QA) environment. After pre-QA test-
ing, this same pattern may be selected for use with an image
created for System p/AIX® PowerVM®. As such, the
deployment may have an identical configuration, even for a
different platform, based upon the metadata-based patterns
and application scripts that describe the configuration. If this
same pattern, deployed to a production environment, requires
a slightly different configuration (e.g., the name of a database
is different), a parameter may be added to the pattern that may
be specified at deployment time. This allows the exact same
pattern with just one parameter difference to be used from QA
through production. The specific parameter may be recorded
in the deployment to discern the difference between the two
deployments.

As such, the present subject matter provides an efficient
mechanism for managing repeatable and consistent deploy-
ment across the development life-cycle, particularly when
these deployments span different platforms. The combination
of master overloaded virtual images with patterns may also
improve maintenance of deployed solutions. If a working
pre-QA VMware® environment is deployed, an identical
solution deployment within a different environment may be
efficiently deployed, without requiring installation of an

10

15

20

25

30

35

40

45

50

55

60

65

6

operating system (OS), installation of middleware, or redoing
topology definitions or application configurations.

To support cross-platform portability, master overloaded
virtual images of a product/solution are created for each dif-
ferent target platform. As described above, master overloaded
virtual images include preinstalled and preconfigured ver-
sions of the product, specifically optimized for each platform,
and/or preconfigured parts for one or more solutions. The
preconfigured parameters to the master overloaded virtual
images are exposed as metadata. Metadata patterns are pro-
vided with capabilities to customize the patterns for common
configurations of the product. For example, cluster patterns
may be implemented via metadata. Parameters may be added
to the pattern for variables that may be different each time the
pattern is deployed. An identical pattern may be reused for
different stages in the development lifecycle. The pattern may
initially be deployed into a pre-QA environment that is on
VMware®. When the pattern topology is instantiated for
VMware®, the master VMware® image is used. The pattern
topology configuration is constructed by passing the pattern
parameters into the master VMware® image. When moving
to a QA test cycle on PowerVM®, the identical pattern topol-
ogy may be used, with no changes. For QA, a parameter for a
test and development database may be used. When the pattern
topology is instantiated for AIX®, the master AIX® Pow-
erVM® image is used again and the pattern topology con-
figuration is constructed by passing the identical pattern
parameters into the master AIX® PowerVM® image. When
moving to production on an AIX® platform, the identical
pattern topology may be used, with no changes. The only
difference is the parameter for the database of the respective
platform. This facilitates repeatability and consistency of
solution deployments. When the pattern topology is instanti-
ated for an AIX® production environment, the identical mas-
ter AIX® PowerVM® image may be used with reduced
installation and configuration activities. Again, the repeatable
pattern topology configuration is constructed by passing the
identical pattern parameters into the master AIX® Pow-
erVM® image.

It should be noted that while the present subject matter is
directed to virtual image overloading where one or more
solutions is associated as a collection of instantiable parts
within a single master overloaded virtual image, the aspect of
using a single master overloaded virtual image should not be
considered limiting. For example, where one or more com-
ponents are used less often than other components in
deployed solutions (e.g., a directory server may not always
form a part of a deployed solution), a part for each of the
less-used components may be associated with one or more
separate virtual images (each may also be overloaded virtual
images) that are deployed in association with the primary
master overloaded virtual image. In such a situation, connec-
tions may be established between multiple virtual images and
the associated instantiated parts to implement a single
deployed solution. Again, metadata may be used to define
how parts may be put together to form a solution. Pattern
abstractions define what parts may be selected and how they
may be interconnected. As described above, these patterns
may be implemented on multiple platforms based upon one or
more parts selected from one or more master overloaded
virtual images. As such, deployment time for solutions where
all parts are included in a single master overloaded virtual
image may be improved by associating less-used parts with
different virtual images. By partitioning the less-used parts to
different virtual images, master overloaded virtual images for
solutions that do not instantiate the respective parts may be
smaller and copied faster. Virtual images including the less-



US 9,104,454 B2

7

used parts may be copied as needed for a given solution that
instantiates the respective part(s).

The virtual image overloading for solution deployment
described herein may be performed in real time to allow
prompt deployment of solutions via a master overloaded vir-
tual image. For purposes of the present description, real time
shall include any time frame of sufficiently short duration as
to provide reasonable response time for information process-
ing acceptable to a user of the subject matter described. Addi-
tionally, the term “real time” shall include what is commonly
termed “near real time”—generally meaning any time frame
of sufficiently short duration as to provide reasonable
response time for on-demand information processing accept-
able to a user of the subject matter described (e.g., within a
portion of a second, within a few seconds, within a few
minutes, etc.). These terms, while difficult to precisely define
are well understood by those skilled in the art.

FIG. 1 is a block diagram of an example of an implemen-
tation of a system 100 for virtual image overloading for
solution deployment. An image configuration device 102
communicates via a network 104 with devices associated
with a hypervisor cloud 106 and with devices associated with
a hypervisor cloud 108.

As will be described in more detail below in association
with FIG. 2 through FIG. 6, the image configuration device
102 provides automated virtual image overloading for solu-
tion deployment. The automated virtual image overloading
for solution deployment is based upon associating multiple
pre-configured parts with one or more master overloaded
virtual images. The automated virtual image overloading for
solution deployment provides enhanced solution design,
deployment, and life-cycle management.

It should be noted that the image configuration device 102
may be any computing device capable of processing infor-
mation as described above and in more detail below. For
example, the image configuration device 102 may include
devices such as a server, a personal computer (e.g., desktop,
laptop, palm, etc.), or a handheld device (e.g., cellular tele-
phone, personal digital assistant (PDA), etc.), or any other
device capable of processing information as described in
more detail below.

The network 104 may include any form of interconnection
suitable for the intended purpose, including a private or public
network such as an intranet or the Internet, respectively, direct
inter-module interconnection, dial-up, wireless, or any other
interconnection mechanism capable of interconnecting the
respective devices.

The hypervisor cloud 106 includes a hypervisor platform
110 and a storage device 112. The hypervisor platform 110
includes a server_1 114 through a server_N 116 that each
represent servers supporting a virtual hypervisor platform
within the hypervisor cloud 106 to each support at least one
virtual machine. Similarly, the hypervisor cloud 108 includes
a hypervisor platform 118 and a storage device 120. The
hypervisor platform 118 includes a server_T 122 through a
server_Z 124 that each represent servers supporting a virtual
hypervisor platform within the hypervisor cloud 108 to each
support at least one virtual machine. It is understood that the
hypervisor platform associated with each of the hypervisor
cloud 106 and the hypervisor cloud 108 may be different or
identical based upon the given implementation. For purposes
of the present example, they are assumed to represent difter-
ent hypervisor platforms (e.g., VMware®, AIX® Pow-
erVM®, etc.).

It should be understood that the storage device 112 and the
storage device 120 may include any form of storage appro-
priate for a given implementation. For example, the storage

10

15

20

25

30

35

40

45

50

55

60

65

8

device 112 and/or the storage device 120 may include storage
such as a storage area network (SAN), storage associated with
one or more servers within a hypervisor cloud, or other stor-
age device(s) without departure from the scope of the present
subject matter. Additionally, each of the server_1 114 through
the server_N 116 and the server_T 122 through the server_7.
124 may support and/or host multiple virtual machines.
Where appropriate for a given implementation, an entire solu-
tion may be implemented on a single server, such as one of the
server_1 114 through the server_N 116 and/or the server_T
122 through the server_7 124.

An image repository 126 stores master overloaded virtual
images created by the image configuration device 102 prior to
deployment. Deployed master overloaded virtual images are
copied during or prior to deployment to the storage device
112 and the storage device 120 for the hypervisor platform
110 and the hypervisor platform 118, respectively.

A configuration metadata storage device 128 stores con-
figuration metadata created by the image configuration
device 102 for selection of parts associated with master over-
loaded virtual images for the respective hypervisor platforms.
As described above, the configuration metadata may include
part information from which to select preconfigured param-
eters (e.g., preconfigured profiles) that is passed into the
master overloaded virtual images as parameters. The configu-
ration metadata may also include platform agnostic patterns
(as metadata), configuration parameters, scripts, passwords,
and other information associated with creation, deployment,
and management of solutions using master overloaded virtual
images as described herein.

As also described above, platform specific technologies
may be leveraged to optimize performance of starting of the
same master overloaded virtual image as multiple virtual
machines associated with one or more servers. The respective
parts may be instantiated within the respective hypervisor
platforms to implement a deployed solution.

It should also be noted that while the storage device 112,
the storage device 120, the image repository 126, and the
configuration metadata storage device 128 are shown as data-
bases generally, they may each include one or more storage
locations. Additionally, they may each include storage orga-
nized as a database, a file system, or any other form of storage
appropriate for a given implementation, including without
limitation a storage area network.

FIG. 2 is a logical flow block diagram of an example of an
implementation of portions of the system 100 of FIG. 1 for
virtual image overloading for solution deployment. Several of
the components of FIG. 1 are shown within FIG. 2. The
network 104 and the image configuration device 102 are
omitted for brevity. However, it is understood that the virtual
image overloading for solution deployment is performed
under the control of the image configuration device 102
within the present example. As can be seen from FIG. 2, the
image repository 126 includes a platform_1 master image
200, a platform_2 master image 202, through a platform_S
master image 204. The respective platforms associated with
the platform_1 master image 200, the platform_2 master
image 202, through the platform_S master image 204 may
include, for example, VMware®, AIX® PowerVM®, Z
Series® hypervisor platforms, or other platforms.

As described above, master overloaded virtual images may
be created for each hypervisor platform upon which a solution
or set of solutions associated with one or more master over-
loaded virtual images may be deployed. As such, for purposes
of'the present example, each of the platform_1 master image
200, platform_2 master image 202, through a platform_S



US 9,104,454 B2

9

master image 204 represent one or more master overloaded
virtual images for different platforms.

Additionally, for purposes of the present example, the plat-
form_1 master image 200 is associated with the hypervisor
platform 110 within the hypervisor cloud 106. Similarly, the
platform_2 master image 202 is associated with the hypervi-
sor platform 118 within the hypervisor cloud 108. However, it
should be noted that the platform_1 master image 200 and the
platform_2 master image 202 may represent either a same
solution or set of solutions based upon the same platform
agnostic pattern or may be based upon one or more different
patterns without departure from the scope of the present sub-
ject matter.

The image configuration device 102 (see FIG. 1) may
deploy the platform_1 master image 200 automatically via
the network 104 (see FIG. 1) to the hypervisor cloud 106 by
initially storing the platform_1 master image 200 within the
storage device 112, either prior to or at a time of deployment.
Deployment of the platform_1 master image 200 to the stor-
age device 112 is represented by an arrow 206. Similarly,
copying of the platform_2 master image 202 to the storage
device 120 for deployment to the hypervisor cloud 108 is
represented by an arrow 208.

To initiate instantiation of parts, the image configuration
device 102 applies metadata stored within the configuration
metadata storage device 128 to each of the platform_1 master
image 200 and the platform_2 master image 202 that are
stored within the storage device 112 and the storage device
120, respectively. An arrow 210 and an arrow 212 represent
application of metadata by the image configuration device
102 to the platform_1 master image 200 and the platform_2
master image 202, respectively.

As described above, the metadata may include part infor-
mation from which to select preconfigured profiles that is
passed in as parameters to the respective overloaded virtual
master images to identify parts to be instantiated in associa-
tion with one or more servers configured as virtual machine
hosts within the respective hypervisor clouds. An arrow 214
and an arrow 216 represent instantiation of parts associated
with a solution in association with the server_1 114 through
the server_N 116 within the hypervisor platform 110 based
upon the platform_1 master image 200. An arrow 218 and an
arrow 220 also represent part instantiation associated with a
solution in association with the server_Z 124 through the
server_T 122 within the hypervisor platform 118 based upon
the platform_2 master image 202.

Accordingly, the image configuration device 102 may copy
one or more master overloaded virtual images from an image
repository, such as the image repository 126, to storage asso-
ciated with a given hypervisor cloud. Each part associated
with a given solution may be selected from the master over-
loaded virtual image(s) and instantiated in association with
host devices (e.g., servers) operating with a given hypervisor
platform by application of metadata including patterns, pro-
files, parameters, and scripts to the respective master over-
loaded virtual image(s).

FIG. 3 is a block diagram of an example of an implemen-
tation of the image configuration device 102 capable of per-
forming automated virtual image overloading for solution
deployment. A central processing unit (CPU) 300 provides
computer instruction execution, computation, and other capa-
bilities within the image configuration device 102. A display
302 provides visual information to a user of the image con-
figuration device 102 and an input device 304 provides input
capabilities for the user.

The display 302 may include any display device, such as a
cathode ray tube (CRT), liquid crystal display (LCD), light

5

10

15

20

25

30

35

40

45

55

60

65

10

emitting diode (LED), projection, touchscreen, or other dis-
play element or panel. The input device 304 may include a
computer keyboard, a keypad, a mouse, a pen, a joystick, or
any other type of input device by which the user may interact
with and respond to information on the display 302.

It should be noted that the display 302 and the input device
304 are illustrated with a dashed-line representation within
FIG. 3 to indicate that they may be optional components for
the image configuration device 102 for certain implementa-
tions. For example, for solution design and testing, the dis-
play 302 and the input device 304 may be used by a solution
designer. For solution deployment, the image configuration
device 102 may operate in an automated manner to copy
master overloaded virtual images to hypervisor clouds and to
instantiate and start the respective parts that form the
deployed solution. Additionally, solution management may
include user feedback and input for changes to deployed
solutions. Accordingly, the image configuration device 102
may operate as a completely automated embedded device
without user configurability or feedback. However, the image
configuration device 102 may also provide user feedback and
configurability via the display 302 and the input device 304,
respectively.

A communication module 306 provides interconnection
capabilities that allow the image configuration device 102 to
communicate with other modules within the system 100, such
as components described above within the hypervisor cloud
106 and the hypervisor cloud 108, to implement the virtual
image overloading for solution deployment described herein.
The communication module 306 may include any electrical,
protocol, and protocol conversion capabilities useable to pro-
vide the interconnection capabilities. Though the communi-
cation module 306 is illustrated as a component-level module
for ease of illustration and description purposes, it should be
noted that the communication module 306 may include any
hardware, programmed processor(s), and memory used to
carry out the functions of the communication module 306 as
described above and in more detail below. For example, the
communication module 306 may include additional control-
ler circuitry in the form of application specific integrated
circuits (ASICs), processors, antennas, and/or discrete inte-
grated circuits and components for performing communica-
tion and electrical control activities associated with the com-
munication module 306. Additionally, the communication
module 306 may include interrupt-level, stack-level, and
application-level modules as appropriate. Furthermore, the
communication module 306 may include any memory com-
ponents used for storage, execution, and data processing for
performing processing activities associated with the commu-
nication module 306. The communication module 306 may
also form a portion of other circuitry described without depar-
ture from the scope of the present subject matter.

A memory 308 includes a solution design storage area 310
that stores design information associated with design and
development of parts and solutions for the image configura-
tion device 102. For example, patterns, profiles, parameters,
and scripts may all be stored within the solution design stor-
age area 310 throughout solution design, then stored for
example to the configuration metadata storage device 128 for
testing and deployment.

A solution deployment storage area 312 stores information
associated with solution deployment, such as information
identifying a solution to be deployed, information identifying
a master overloaded virtual image stored in the image reposi-
tory 126 for deployment, and information identifying a
hypervisor cloud to which the identified solution is to be
deployed. A solution management storage area 314 stores



US 9,104,454 B2

11

information associated with solution management for
deployed solutions. The information stored within the solu-
tion management storage area 314 may include performance
monitoring and tracking information associated with
deployed solutions.

Though the present example shows the solution design
storage area 310, the solution deployment storage area 312,
and the solution management storage area 314 as separate
storage areas within the memory 308, this should not be
considered limiting. A single storage area within a single
memory, or alternatively multiple memories, may be used as
appropriate for a given implementation. It is also understood
that the memory 308 may include any combination of volatile
and non-volatile memory suitable for the intended purpose,
distributed or localized as appropriate, and may include other
memory segments not illustrated within the present example
for ease of illustration purposes. For example, the memory
308 may include a code storage area, a code execution area,
and a data area without departure from the scope of the
present subject matter.

A virtual image processing module 316 is also illustrated.
The virtual image processing module 316 provides the pro-
cessing capabilities for the image configuration device 102,
as described above and in more detail below. The virtual
image processing module 316 implements the automated vir-
tual image overloading for solution deployment of the image
configuration device 102.

Though the virtual image processing module 316 is illus-
trated as a component-level module for ease of illustration
and description purposes, it should be noted that the virtual
image processing module 316 may include any hardware,
programmed processor(s), and memory used to carry out the
functions of this module as described above and in more
detail below. For example, the virtual image processing mod-
ule 316 may include additional controller circuitry in the form
of application specific integrated circuits (ASICs), proces-
sors, and/or discrete integrated circuits and components for
performing communication and electrical control activities
associated with the respective devices. Additionally, the vir-
tual image processing module 316 may also include interrupt-
level, stack-level, and application-level modules as appropri-
ate. Furthermore, the virtual image processing module 316
may include any memory components used for storage,
execution, and data processing for performing processing
activities associated with the module.

It should also be noted that the virtual image processing
module 316 may form a portion of other circuitry described
without departure from the scope of the present subject mat-
ter. Further, the virtual image processing module 316 may
alternatively be implemented as an application stored within
the memory 308. In such an implementation, the virtual
image processing module 316 may include instructions
executed by the CPU 300 for performing the functionality
described herein. The CPU 300 may execute these instruc-
tions to provide the processing capabilities described above
and in more detail below for the image configuration device
102. The virtual image processing module 316 may form a
portion of an interrupt service routine (ISR), a portion of an
operating system, a portion of a browser application, or a
portion of a separate application without departure from the
scope of the present subject matter.

The image repository 126 and the configuration metadata
storage device 128 are illustrated within FIG. 3 to show that
the respective storage areas may alternatively be associated
with the image configuration device 102 rather than accessed
via the network 104.

10

15

20

25

30

35

40

45

50

55

60

65

12

The CPU 300, the display 302, the input device 304, the
communication module 306, the memory 308, the virtual
image processing module 316, the image repository 126, and
the configuration metadata storage device 128 are intercon-
nected via an interconnection 318. The interconnection 318
may include a system bus, a network, or any other intercon-
nection capable of providing the respective components with
suitable interconnection for the respective purpose.

While the image configuration device 102 is illustrated
with and has certain components described, other modules
and components may be associated with the image configu-
ration device 102 without departure from the scope of the
present subject matter. Additionally, it should be noted that,
while the image configuration device 102 is described as a
single device for ease of illustration purposes, the compo-
nents within the image configuration device 102 may be
co-located or distributed and interconnected via a network
without departure from the scope of the present subject mat-
ter. For a distributed arrangement, the display 302 and the
input device 304 may be located within a development lab, at
a kiosk, or at another location, while the CPU 300 and
memory 308 may be located at a local or remote server. Many
other possible arrangements for components of the image
configuration device 102 are possible and all are considered
within the scope of the present subject matter. It should also
be understood that, though the image repository 126 and the
configuration metadata storage device 128 are shown as
stand-alone components of the image configuration device
102, they may also be stored within the memory 308 without
departure from the scope of the present subject matter.
Accordingly, the image configuration device 102 may take
many forms and may be associated with many platforms.

FIG. 4 through FIG. 6 below describe example processes
that may be executed by such devices, such as the image
configuration device 102, to perform the automated virtual
image overloading for solution deployment associated with
the present subject matter. Many other variations on the
example processes are possible and all are considered within
the scope of the present subject matter. The example pro-
cesses may be performed by modules, such as the virtual
image processing module 316 and/or executed by the CPU
300, associated with such devices. It should be noted that time
out procedures and other error control procedures are not
illustrated within the example processes described below for
ease of illustration purposes. However, it is understood that
all such procedures are considered to be within the scope of
the present subject matter.

FIG. 4 is a flow chart of an example of an implementation
of'a process 400 for automated virtual image overloading for
solution deployment. At block 402, the process 400 deploys,
via a virtual image configuration device, at least one master
overloaded virtual image to a hypervisor cloud that comprises
a plurality of servers, each of the plurality of servers config-
ured based upon a hypervisor platform to support at least one
virtual machine. At block 404, the process 400 instantiates,
based upon the at least one master overloaded virtual image,
a service solution as a plurality of virtual machines associated
with at least one of the plurality of servers, where the service
solution comprises a platform agnostic pattern independent
of the hypervisor platform. At block 406, the process 400
initiates startup of each of the instantiated plurality of virtual
machines.

FIG. 5 is a flow chart of an example of an implementation
of'a process 500 for defining solutions and design of master
overloaded virtual images for automated virtual image over-
loading for solution deployment. It should be noted that the
present example process 500 combines a single solution defi-



US 9,104,454 B2

13

nition with design and creation of multiple master overloaded
virtual images for ease of description purposes. However, as
described above, multiple solutions may be associated with a
single master overloaded virtual image. Additionally, mul-
tiple master overloaded virtual images may be created, for
example, where one solution associated with a multi-solution
master overloaded virtual image utilizes a component (e.g., a
directory server), and other solutions within the multi-solu-
tion master overloaded virtual image do not utilize this com-
ponent. Further, these multiple solutions may each be based
upon a different platform agnostic pattern. These platform
agnostic patterns may be implemented for different hypervi-
sor platforms via creation of a different master overloaded
virtual image for each such hypervisor platform. As such, for
purposes of the present example, a single platform agnostic
pattern associated with a single solution to be deployed within
one or more master overloaded virtual images is assumed.
However, it should be understood that many variations on the
present example process 500 are possible based upon the
description herein and all are considered within the scope of
the present subject matter.

At decision point 502, the process 500 makes a determina-
tion as to whether an indication to define a solution has been
detected or received. For example, an indication to define a
solution may be detected or received from a user of the image
configuration device 102, either via the network 104 or via the
input device 304. As described above, the solution may
include a platform agnostic pattern that is independent of the
hypervisor platform to which it is to be deployed. This inde-
pendence allows reuse of the platform agnostic pattern across
multiple hypervisor platforms by creation of a master over-
loaded virtual image for each such hypervisor platform.

When a determination is made at decision point 502 that an
indication to define a solution has been detected or received,
the process 500 creates an initial master overloaded virtual
image at block 504. It should be understood that a master
overloaded virtual image may already be created and modi-
fied in association with the process 500 for definition of
additional parts in association with the master overloaded
virtual image and/or a solution. As such, the processing at
block 504 to create the initial master overloaded virtual image
is for ease of illustration purposes only and may be changed to
“select” a master overloaded virtual image as appropriate for
a given implementation without departure from the scope of
the present subject matter.

Atblock 506, the process 500 receives a part definition and
part configuration metadata for a first part. As described in
more detail below, the process 500 iterates to allow definition
and configuration metadata to be received for multiple parts
in association with a single master overloaded virtual image.
The part definition and part configuration metadata for each
part may be received, for example, alternatively via the net-
work 104 or via the input device 304.

At decision point 508, the process 500 makes a determina-
tion as to whether image sharing is to be utilized for the part.
As described above, image sharing may be implemented by
reuse of portions of the master overloaded virtual image. This
reuse aspect of the master overloaded virtual image provides
for definition of minimal executable parts that may be instan-
tiated as virtual machines that reuse portions of the master
overloaded virtual image rather than creating larger mono-
lithic parts that require more copy and instantiation time and
bandwidth. As also described above, during deployment, a
solution deployer may make a determination based upon
client guidelines regarding performance, storage, and other
criteria, as to whether to instantiate entire parts, minimal
executable portions, or parts that are configured for a varia-

40

45

14

tion of one or more such criteria. As such, the determination
at decision point 508 may include making a determination as
to a set of configuration options to be made available for a part
at a time of deployment, including full part, minimal execut-
able part, or parts that are configured for a variation of one or
more criteria, such as performance, storage, or other criteria.

When a determination is made at decision point 508 to
utilize image sharing for the part, the process 500 identifies a
minimal executable part core at block 510. At block 512, the
process forms the minimal executable part core. At block 514,
the process 500 configures the minimal executable part to
utilize a shared resource of the master overloaded virtual
image.

In response to completion of configuration of the minimal
executable part at block 514 or upon a determination not to
implement image sharing for the part at decision point 508,
the process 500 adds the part definition to the master over-
loaded virtual image at block 516. As described above, adding
the part definition may include adding a complete part defi-
nition including one or more configuration options for instan-
tiation of parts, such as for example, a minimal executable
part. At block 518, the process 500 configures a profile for
instantiating the part based upon the received metadata,
including instantiation of either a complete part or a minimal
executable part. At block 520, the process 500 adds the profile
to the master overloaded virtual image. At block 522, the
process 500 stores the metadata for use during instantiation of
the part from the master overloaded virtual image during
deployment. As described above, the metadata for instantia-
tion of parts from the master overloaded virtual image may be
stored separately from the master overloaded virtual image.
Further, the storage of the metadata for use during instantia-
tion of the part from the master overloaded virtual image
during deployment may be stored via a device, such as the
configuration metadata storage device 128 or other device, as
appropriate for a given implementation.

At decision point 524, the process 500 makes a determina-
tion as to whether to create an image linkage for the part with
a part associated with a different master overloaded virtual
image. It should be noted that at least the first iteration of the
process 500 will result in a false indication unless a previ-
ously-created master overloaded virtual image is referenced.
For subsequent iterations or where a previously-created over-
loaded virtual image is referenced, part connections between
multiple master overloaded virtual images may be formed
and used to implement operational connections between parts
instantiated from the respective parts associated with the mul-
tiple master overloaded virtual images. For purposes of the
present example, it is assumed that all master overloaded
virtual images for a given solution are created during a single
execution of the process 500.

When a determination is made at decision point 524 to
create an image linkage for the part with a part associated with
a different master overloaded virtual image, the process 500
receives part connection information at block 526. At block
528, the process 500 creates part/image connection metadata.
At block 530, the process 500 stores the part/image connec-
tion metadata for use during instantiation of parts in associa-
tion with solution deployment. As described above, the meta-
data may be stored separately from the master overloaded
virtual image. Further, the storage of the metadata may be
stored via a device, such as the configuration metadata stor-
age device 128 or other device, as appropriate for a given
implementation.

Upon completion of storage of the metadata for part/image
connectivity at block 530 or upon a determination not to
create an image linkage for the part with a part associated with



US 9,104,454 B2

15

a different master overloaded virtual image at decision point
524 (e.g., during at least the first iteration of the process 500),
the process 500 makes a determination as to whether to add
another part to the master overloaded virtual image at deci-
sion point 532. When a determination is made to add an
additional part to the master overloaded virtual image, the
process 500 returns to block 506 and iterates as described
above.

When a determination is made not to add an additional part
to the master overloaded virtual image, the process 500 makes
a determination at decision point 534 as to whether to create
an additional linked master overloaded virtual image for the
solution. When a determination is made to create an addi-
tional linked master overloaded virtual image for the solution,
the process 500 returns to block 504 and iterates as described
above.

When a determination is made not to create an additional
linked master overloaded virtual image for the solution at
decision point 534, the process 500 tests the solution at block
536. For ease of illustration, a detailed description of the
testing process is omitted. However, it is understood that
testing may involve deployment of the master overloaded
virtual image, instantiation of parts to form the solution, and
testing of the solution implementation. These testing proce-
dures may be performed on a quality assurance platform
associated with a development laboratory or other infrastruc-
ture as appropriate for a given implementation. Upon comple-
tion of testing of the solution, the process 500 returns to
decision point 502 to await an indication to define a new
solution.

As such, the process 500 provides for creation of one or
more master overloaded virtual images associated with a
solution that is based upon a platform agnostic pattern. Mini-
mal executable portions of parts may be created and config-
ured to reuse portions of a master overloaded virtual image.
Where multiple master overloaded virtual images are utilized
to form a solution, connections between parts across multiple
overloaded virtual images may be formed to allow opera-
tional connections between instantiated parts.

Additionally, as described above, similar processing to that
described above for the process 500 may be performed for
part selection by a solution builder to define a solution from
one or more existing master overloaded virtual images. This
additional processing is not illustrated for brevity. However, it
is understood that such a process for selecting parts from one
or more previously-created master overloaded virtual images
to form a solution may include loading one or more master
virtual images into a solution design user interface applica-
tion. As described above, solution builders interact with
abstractions of the parts within a solution design user inter-
face to define one or more solutions, without knowledge that
all of these parts may be sourced from the same master over-
loaded virtual image. Parts may be selected by the solution
builder and combined to form a solution. Metadata that
defines the respective parts, as described above, may be
selected for instantiation of the selected parts and stored in
association with the solution definition. This solution defini-
tion may be selected for deployment, as described for
example, in association with FIG. 6 below.

FIG. 6 is a flow chart of an example of an implementation
of'a process 600 for deployment of master overloaded virtual
images for automated virtual image overloading for solution
deployment. At decision point 602, the process 600 makes a
determination as to whether an indication to deploy a solution
has been detected or received. For example, an indication to
deploy a solution may be detected or received from a user of
the image configuration device 102, either via the network

20

25

30

35

40

45

50

55

60

65

16

104 or via the input device 304. The indication to deploy the
solution may also include an identifier associated with one or
more master overloaded virtual images by which the solution
is to be deployed.

When a determination is made at decision point 602 that an
indication to deploy a solution has been detected or received,
the process 600 makes a determination at decision point 604
as to whether to copy an identified master overloaded virtual
image to a hypervisor cloud storage associated with a hyper-
visor cloud within which the solution is to be deployed. As
described above, a master overloaded virtual image may
already be stored in association with a hypervisor cloud. In
such a situation, deployment of a solution may be expedited.
When a determination is made to copy the identified master
overloaded virtual image to the hypervisor cloud storage, the
process 600 copies an identified master overloaded virtual
image to the hypervisor cloud storage associated with the
hypervisor cloud within which the solution is to be deployed
at block 606. The hypervisor cloud storage may include, for
example a storage device such as the storage device 112 orthe
storage device 120.

Upon completion of copying the master overloaded virtual
image to the hypervisor cloud storage at block 606 or upon
making a determination that the master overloaded virtual
image is already stored in association with the hypervisor
cloud storage, the process 600 begins instantiation of virtual
machines associated with the solution by selecting metadata
that identifies a preconfigured profile for a first preconfigured
instantiable part associated with the first identified master
overloaded virtual image and sends the selected metadata to
the deployed master overloaded virtual image at block 608.
As described above, each preconfigured profile associated
with a master overloaded virtual images defines a virtual
machine associated with the solution.

At decision point 610, the process 600 makes a determina-
tion as to whether the part (e.g., a first part for a first iteration)
to be instantiated in association with the solution is to be
instantiated as a minimal executable part with resources shar-
ing within the master overloaded virtual image. When a deter-
mination is made to instantiate a minimal executable part at
decision point 610, the process 600 replicates a minimal
executable portion of the master overloaded virtual image for
the preconfigured part at block 612. When a determination is
made not to instantiate a complete executable part at decision
point 610, the process 600 replicates an executable portion of
the master overloaded virtual image for the complete precon-
figured part at block 614. As described above, replicating an
executable portion of the master overloaded virtual image for
the preconfigured part may include replicating a minimal
executable portion of the master overloaded virtual image to
implement master overloaded virtual image resource sharing
and the determination as to whether to implement resource
sharing may be made for each instantiated part.

At block 616, the process 600 stores the replicated execut-
able part to storage associated with a virtual machine host
(e.g., a server such as one of the server_1 114 through the
server_N 116). At block 618, the process 600 configures the
replicated part as a virtual machine associated with the solu-
tion. As described above, configuring the replicated part as a
virtual machine may include configuring a replicated mini-
mal executable portion of the master overloaded virtual
image that is instantiated as the virtual machine to utilize at
least one shared resource located within the master over-
loaded virtual image.

At decision point 620, the process 600 makes a determina-
tion as to whether to form a connection between the instanti-
ated virtual machine and another instantiated virtual



US 9,104,454 B2

17

machine. It is understood that the first iteration of the process
600 will result in a negative determination at decision point
620. However, subsequent iterations may include a determi-
nation to form an operational connection between instanti-
ated virtual machines. Additionally, as described above,
where two master overloaded virtual images include a part
connection between a first instantiable preconfigured part
within a first master overloaded virtual image and a second
instantiable preconfigured part within a second master over-
loaded virtual image, an operational connection may be
established between the instantiated virtual machines based
upon the part connection. When a determination is made at
decision point 620 to connect the instantiated virtual machine
to at least one other instantiated virtual machine, the process
600 establishes a connection between instantiated virtual
machines at block 622.

When a determination is made at decision point 620 not to
connect the instantiated virtual machine to at least one other
instantiated virtual machine, or upon establishing a connec-
tion between instantiated virtual machines at block 622, the
process 600 makes a determination at decision point 624 as to
whether another part is associated with the current master
overloaded virtual image to be instantiated for the solution.
As described above, a master overloaded virtual image may
be defined to include a single solution or multiple platform
agnostic solutions. In either situation, where multiple virtual
machines are defined to implement a solution, multiple parts
are configured for instantiation of the respective virtual
machines within at least one master overloaded virtual image.
When a determination is made at decision point 624 that
another part is associated with the current master overloaded
virtual image to be instantiated for the solution, the process
600 returns to block 608 and iterates as described above and
this processing continues for each part to be instantiated from
the master overloaded virtual image.

When a determination is made at decision point 624 that
another part associated with the current master overloaded
virtual image is not to be instantiated for the solution, the
process 600 makes a determination at decision point 626 as to
whether another master virtual image is associated with the
solution. As described above, two or more master virtual
images may be associated with a solution, with at least a
primary master virtual image including a master overloaded
virtual image. The second master virtual image may include
one or more less-frequently used parts. As such, the second
master virtual image may also include a master overloaded
virtual image. When a determination is made that another
master virtual image is associated with the solution, the pro-
cess 600 returns to decision point 604 and iterates as
described above for each such additional master virtual
image.

When a determination is made that another master virtual
image is not associated with the solution, the process 600
initiates startup of each instantiated virtual machine and
begins managing the deployed virtual machines that form the
solution atblock 628. It is understood that the management of
the deployed virtual machines may include additional pro-
cessing. This additional processing is not described for brev-
ity. However, any such management activities are considered
within the scope of the present subject matter. Upon comple-
tion of initiating startup of each instantiated virtual machine
and beginning management of the deployed virtual machines
that form the solution at block 628, the process 600 returns to
decision point 602 to await an indication to deploy a solution
to be detected or received.

As such, the process 600 deploys one or more master
overloaded virtual images to storage associated with a hyper-

35

40

45

65

18

visor cloud that includes a group of servers if the master
overloaded virtual image(s) is not already stored in associa-
tion with the hypervisor cloud. Each of the group of servers is
configured as a virtual host based upon a hypervisor platform
to support at least one virtual machine. The process 600
replicates at least a minimal executable portion of the master
overloaded virtual image for each virtual machine that forms
the solution. Minimal executable portions that are instanti-
ated may be configured to reuse a portion of the master
overloaded virtual image. Complete parts are instantiated to
include all resources used during operation. Operational con-
nections are established between instantiated virtual
machines. These connections may be established based upon
part connections associated with preconfigured instantiable
parts within one or more master virtual images.

As described above in association with FIG. 1 through FIG.
6, the example systems and processes provide virtual image
overloading for solution deployment. Many other variations
and additional activities associated with virtual image over-
loading for solution deployment are possible and all are con-
sidered within the scope of the present subject matter.

Those skilled in the art will recognize, upon consideration
of'the above teachings, that certain of the above examples are
based upon use of a programmed processor, such as the CPU
300. However, the invention is not limited to such example
embodiments, since other embodiments could be imple-
mented using hardware component equivalents such as spe-
cial purpose hardware and/or dedicated processors. Similarly,
general purpose computers, microprocessor based comput-
ers, micro-controllers, optical computers, analog computers,
dedicated processors, application specific circuits and/or
dedicated hard wired logic may be used to construct alterna-
tive equivalent embodiments.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
ormore computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage medium may be
any tangible medium that can contain, or store a program for
use by or in connection with an instruction execution system,
apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code



US 9,104,454 B2

19

embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java™,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on ‘the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer-readable storage medium that can direct a com-
puter or other programmable data processing apparatus to
function in a particular manner, such that the instructions
stored in the computer-readable storage medium produce an
article of manufacture including instructions which imple-
ment the function/act specified in the flowchart and/or block
diagram block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block

10

15

20

25

30

35

40

45

50

55

60

65

20

diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

A data processing system suitable for storing and/or
executing program code will include at least one processor
coupled directly or indirectly to memory elements through a
system bus. The memory elements can include local memory
employed during actual execution of the program code, bulk
storage, and cache memories which provide temporary stor-
age of at least some program code in order to reduce the
number of times code must be retrieved from bulk storage
during execution.

Input/output or /O devices (including but not limited to
keyboards, displays, pointing devices, etc.) can be coupled to
the system either directly or through intervening I/O control-
lers.

Network adapters may also be coupled to the system to
enable the data processing system to become coupled to other
data processing systems or remote printers or storage devices
through intervening private or public networks. Modems,
cable modems and Ethernet cards are just a few of the cur-
rently available types of network adapters.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a,”“an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A method, comprising:

receiving, at a virtual image configuration device, an
instantiable virtual machine part definition and part con-
figuration metadata of an instantiable virtual machine



US 9,104,454 B2

21

capable of deployment as at least a portion of a service
solution from a master overloaded virtual image;

determining whether to configure the instantiable virtual
machine to reuse, via virtual image sharing, at least one
portion of the master overloaded virtual image during
deployment of the instantiable virtual machine within a
service solution;
identifying, from the instantiable virtual machine part defi-
nition and part configuration metadata in response to
determining to configure the instantiable virtual
machine to reuse, via the virtual image sharing, the at
least one portion of the master overloaded virtual image,
a minimal executable virtual machine part core of the
instantiable virtual machine that reuses, via the virtual
image sharing, the at least one portion of the master
overloaded virtual image during execution;

configuring a minimal executable virtual machine part
instantiable from the identified minimal executable vir-
tual machine part core as the instantiable virtual
machine to utilize, via the virtual image sharing, a
shared resource within the master overloaded virtual
image during execution; and

storing the part configuration metadata for use during

instantiation of the instantiable virtual machine from the
master overloaded virtual image during service solution
deployment.

2. The method of claim 1, where the master overloaded
virtual image is deployable to a hypervisor cloud that com-
prises a plurality of servers, each of the plurality of servers
configured based upon a hypervisor platform to support at
least one instantiated virtual machine, and where the service
solution comprises a platform agnostic pattern independent
of the hypervisor platform.

3. The method of claim 1, further comprising adding the
configured minimal executable virtual machine part to the
master overloaded virtual image.

4. The method of claim 3, where adding the configured
minimal executable virtual machine part to the master over-
loaded virtual image comprises adding a complete virtual
machine part definition comprising one or more configuration
options usable to instantiate full virtual machine parts from
the configured minimal executable virtual machine part.

5. The method of claim 1, further comprising configuring
an instantiation profile usable to instantiate the instantiable
virtual machine based upon the received part configuration
metadata, where either a complete virtual machine part or the
minimal executable virtual machine part are instantiable
using the instantiation profile.

6. The method of claim 5, further comprising adding the
instantiation profile to the master overloaded virtual image.

7. A system, comprising:

a communication module; and

a processor programmed to:

receive, via the communication module, an instantiable
virtual machine part definition and part configuration
metadata of an instantiable virtual machine capable of
deployment as at least a portion of a service solution
from a master overloaded virtual image;

determine whether to configure the instantiable virtual
machine to reuse, via virtual image sharing, at least
one portion of the master overloaded virtual image
during deployment of the instantiable virtual machine
within a service solution;

identify, from the instantiable virtual machine part defi-
nition and part configuration metadata in response to
determining to configure the instantiable virtual
machine to reuse, via the virtual image sharing, the at

15

20

30

40

45

50

22

least one portion of the master overloaded virtual
image, a minimal executable virtual machine part
core of the instantiable virtual machine that reuses,
via the virtual image sharing, the at least one portion
of the master overloaded virtual image during execu-
tion;

configure a minimal executable virtual machine part
instantiable from the identified minimal executable
virtual machine part core as the instantiable virtual
machine to utilize, via the virtual image sharing, a
shared resource within the master overloaded virtual
image during execution; and

store the part configuration metadata for use during
instantiation of the instantiable virtual machine from
the master overloaded virtual image during service
solution deployment.
8. The system of claim 7, where the master overloaded
virtual image is deployable to a hypervisor cloud that com-
prises a plurality of servers, each of the plurality of servers
configured based upon a hypervisor platform to support at
least one instantiated virtual machine, and where the service
solution comprises a platform agnostic pattern independent
of the hypervisor platform.
9. The system of claim 7, where the processor is further
programmed to add the configured minimal executable vir-
tual machine part to the master overloaded virtual image.
10. The system of claim 9, where, in being programmed to
add the configured minimal executable virtual machine part
to the master overloaded virtual image, the processor is pro-
grammed to add a complete virtual machine part definition
comprising one or more configuration options usable to
instantiate full virtual machine parts from the configured
minimal executable virtual machine part.
11. The system of claim 7, where the processor is further
programmed to configure an instantiation profile usable to
instantiate the instantiable virtual machine based upon the
received part configuration metadata, where either a complete
virtual machine part or the minimal executable virtual
machine part are instantiable using the instantiation profile.
12. The system of claim 11, where the processor is further
programmed to add the instantiation profile to the master
overloaded virtual image.
13. A computer program product, comprising:
a computer-readable storage device having computer-read-
able program code embodied therewith, where the com-
puter-readable program code when executed on a com-
puter causes the computer to:
receive an instantiable virtual machine part definition
and part configuration metadata of an instantiable
virtual machine capable of deployment as at least a
portion of a service solution from a master overloaded
virtual image;

determine whether to configure the instantiable virtual
machine to reuse, via virtual image sharing, at least
one portion of the master overloaded virtual image
during deployment of the instantiable virtual machine
within a service solution;

identify, from the instantiable virtual machine part defi-
nition and part configuration metadata in response to
determining to configure the instantiable virtual
machine to reuse, via the virtual image sharing, the at
least one portion of the master overloaded virtual
image, a minimal executable virtual machine part
core of the instantiable virtual machine that reuses,
via the virtual image sharing, the at least one portion
of the master overloaded virtual image during execu-
tion;



US 9,104,454 B2

23

configure a minimal executable virtual machine part
instantiable from the identified minimal executable
virtual machine part core as the instantiable virtual
machine to utilize, via the virtual image sharing, a
shared resource within the master overloaded virtual
image during execution; and

store the part configuration metadata for use during
instantiation of the instantiable virtual machine from
the master overloaded virtual image during service
solution deployment.

14. The computer program product of claim 13, where the
master overloaded virtual image is deployable to a hypervisor
cloud that comprises a plurality of servers, each of the plu-
rality of servers configured based upon a hypervisor platform
to support at least one instantiated virtual machine, and where
the service solution comprises a platform agnostic pattern
independent of the hypervisor platform.

15. The computer program product of claim 13, where the
computer-readable program code when executed on the com-
puter further causes the computer to add the configured mini-
mal executable virtual machine part to the master overloaded
virtual image.

10

15

20

24

16. The computer program product of claim 15, where, in
being programmed to add the configured minimal executable
virtual machine part to the master overloaded virtual image,
the computer-readable program code when executed on the
computer causes the computer to add a complete virtual
machine part definition comprising one or more configuration
options usable to instantiate full virtual machine parts from
the configured minimal executable virtual machine part.

17. The computer program product of claim 13, where the
computer-readable program code when executed on the com-
puter further causes the computer to configure an instantia-
tion profile usable to instantiate the instantiable virtual
machine based upon the received part configuration meta-
data, where either a complete virtual machine part or the
minimal executable virtual machine part are instantiable
using the instantiation profile.

18. The computer program product of claim 17, where the
computer-readable program code when executed on the com-
puter further causes the computer to add the instantiation
profile to the master overloaded virtual image.

#* #* #* #* #*



